Bildgebung und Genetik

Andreas Meyer-Lindenberg
Zentralinstitut für Seelische Gesundheit, Mannheim
Complex path from gene to behavior

Systems-level intermediate phenotype: imaging genetics

<table>
<thead>
<tr>
<th>Study name</th>
<th>Std diff in means</th>
<th>Standard error</th>
<th>Variance</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>Z-Value</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bertolino; 2006a</td>
<td>0.922952</td>
<td>0.286766</td>
<td>0.082335</td>
<td>0.350901</td>
<td>1.495002</td>
<td>3.218487</td>
<td>0.001289</td>
</tr>
<tr>
<td>Bertolino; 2006b</td>
<td>0.866313</td>
<td>0.403607</td>
<td>0.162899</td>
<td>0.093257</td>
<td>1.677369</td>
<td>2.195979</td>
<td>0.028093</td>
</tr>
<tr>
<td>Bertolino; 2006c</td>
<td>1.570141</td>
<td>0.510027</td>
<td>0.263389</td>
<td>0.652365</td>
<td>2.587416</td>
<td>3.025161</td>
<td>0.002485</td>
</tr>
<tr>
<td>Bertolino; 2006c</td>
<td>1.372262</td>
<td>0.451054</td>
<td>0.245129</td>
<td>0.401374</td>
<td>2.342651</td>
<td>2.771657</td>
<td>0.006577</td>
</tr>
<tr>
<td>Bertolino; 2006c</td>
<td>0.756444</td>
<td>0.257418</td>
<td>0.086264</td>
<td>0.259114</td>
<td>1.280673</td>
<td>2.938584</td>
<td>0.002927</td>
</tr>
<tr>
<td>Bertolino; 2006c</td>
<td>0.437299</td>
<td>0.230333</td>
<td>0.053053</td>
<td>0.001453</td>
<td>0.806373</td>
<td>1.898418</td>
<td>0.067628</td>
</tr>
<tr>
<td>Bishop; 2006</td>
<td>4.279867</td>
<td>1.403866</td>
<td>2.231726</td>
<td>1.351884</td>
<td>7.207846</td>
<td>2.664902</td>
<td>0.004171</td>
</tr>
<tr>
<td>Caliò; 2007</td>
<td>0.619117</td>
<td>0.246737</td>
<td>0.058879</td>
<td>0.135521</td>
<td>1.102713</td>
<td>2.509216</td>
<td>0.012100</td>
</tr>
<tr>
<td>Domschke; 2008</td>
<td>1.020774</td>
<td>0.495812</td>
<td>0.245830</td>
<td>0.049003</td>
<td>1.992548</td>
<td>2.058791</td>
<td>0.039514</td>
</tr>
<tr>
<td>Drabant; 2006</td>
<td>0.926655</td>
<td>0.320724</td>
<td>0.102864</td>
<td>-1.621263</td>
<td>-0.364048</td>
<td>-3.005044</td>
<td>0.001968</td>
</tr>
<tr>
<td>Egan; 2001</td>
<td>2.389708</td>
<td>0.827971</td>
<td>0.685525</td>
<td>0.785918</td>
<td>4.012561</td>
<td>2.886224</td>
<td>0.003989</td>
</tr>
<tr>
<td>Ettinger; 2008</td>
<td>0.964333</td>
<td>0.371381</td>
<td>0.137924</td>
<td>-1.692528</td>
<td>-0.236740</td>
<td>2.567422</td>
<td>0.000303</td>
</tr>
<tr>
<td>Goethe; 2007</td>
<td>0.129859</td>
<td>0.556929</td>
<td>0.310170</td>
<td>-0.581903</td>
<td>1.221220</td>
<td>0.232810</td>
<td>0.815900</td>
</tr>
<tr>
<td>Maltas; 2003</td>
<td>1.290530</td>
<td>0.747761</td>
<td>0.559146</td>
<td>1.439766</td>
<td>4.370955</td>
<td>3.855400</td>
<td>0.001102</td>
</tr>
<tr>
<td>Meyer-Lindenberg;2006</td>
<td>0.796669</td>
<td>0.104114</td>
<td>0.037590</td>
<td>0.416212</td>
<td>1.177126</td>
<td>4.104126</td>
<td>0.000041</td>
</tr>
<tr>
<td>Schott; 2006</td>
<td>2.028647</td>
<td>0.435653</td>
<td>1.187930</td>
<td>1.174786</td>
<td>2.882511</td>
<td>4.650657</td>
<td>0.000003</td>
</tr>
<tr>
<td>Schott; 2006</td>
<td>1.545247</td>
<td>0.403484</td>
<td>1.627990</td>
<td>0.754433</td>
<td>2.336062</td>
<td>3.629761</td>
<td>0.001028</td>
</tr>
<tr>
<td>Smolka; 2005</td>
<td>-1.649081</td>
<td>0.452839</td>
<td>2.098833</td>
<td>-2.547214</td>
<td>-0.750948</td>
<td>-3.569732</td>
<td>0.000320</td>
</tr>
<tr>
<td>Tan; 2007</td>
<td>0.345004</td>
<td>0.442885</td>
<td>0.196417</td>
<td>-0.522065</td>
<td>1.213129</td>
<td>0.779195</td>
<td>0.435685</td>
</tr>
<tr>
<td>Tan; 2007</td>
<td>1.494534</td>
<td>0.544830</td>
<td>0.298640</td>
<td>0.428687</td>
<td>2.562380</td>
<td>2.743120</td>
<td>0.006086</td>
</tr>
<tr>
<td>Tan; 2007</td>
<td>1.377671</td>
<td>0.414908</td>
<td>0.172147</td>
<td>0.564471</td>
<td>2.190672</td>
<td>3.320444</td>
<td>0.000869</td>
</tr>
<tr>
<td>Williams-Gray; 2007</td>
<td>0.730501</td>
<td>0.371324</td>
<td>0.137881</td>
<td>0.072700</td>
<td>1.426283</td>
<td>1.979542</td>
<td>0.047755</td>
</tr>
<tr>
<td>Williams-Gray; 2008</td>
<td>1.222767</td>
<td>0.406450</td>
<td>1.065202</td>
<td>0.426140</td>
<td>2.019365</td>
<td>3.008407</td>
<td>0.002626</td>
</tr>
<tr>
<td>Yacubian; 2007</td>
<td>-1.640767</td>
<td>0.345251</td>
<td>0.119156</td>
<td>-2.317446</td>
<td>-0.964088</td>
<td>-4.752392</td>
<td>0.000002</td>
</tr>
</tbody>
</table>

Mier et al, Mol Psych 2009

Effect size = 0.73
Imaging genetics

- Common genetic variants
 - Need around 80 subjects for functional variants with reasonable MAF (Meir et al, Munafo et al.
 - „packing your lunchbox and then looking what‘s inside“
 - Make sense if querying a given system
- Genome-wide significant variants
 - Better evidence for being linked to psychiatric illness
 - Same considerations with regard to sample size
- Rare variants – CNVs
- Epigenetics
- Forward genetics approaches
5-HT Transporter Promoter Variant (5-HTTLPR)

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/I</td>
<td>32%</td>
</tr>
<tr>
<td>I/s</td>
<td>49%</td>
</tr>
<tr>
<td>s/s</td>
<td>19%</td>
</tr>
</tbody>
</table>
t test (5-HTTLPR)

LL > S

SPM\text{mip}^{-1, 2, 1, 1}

SPM\{T, 108\}

SPM\text{results: 14
corr lvs-carriers}
Height threshold T = 1.66
Extent threshold k = 0 voxels

Published in Pezawas*, Meyer-Lindenberg* et al. *Nat Neurosci* 2005
SNPs

- 2 alleles, usually coded 1 and 2 (frequent and rare)
- For autosomal genes, three genotypes: 11, 12, 22
- ANOVA with three groups – can look at heterozygote effects, must be careful to specify the correct contrasts if looking for a codominant effect
- Regression: genotypes coded as 1 (11), 2 (12), 3 (22), mean centered or not doesn’t matter if a constant is included in the model, codominant effect is “hardwired” in the model but heterozygote effects could be missed
The COMT val^{158/108}met polymorphism

"high-activity" thermo-stable ancestral allele

...CGTG... ..AGVKD...

“low-activity” thermo-labile human allele

...CATG... ..AGMKD...

SOURCE: NCBI, GEN-BANK, ACCESSION # Z26491
ANOVA (COMT val158met)

Honea*, Verchinski* et al. Neuroimage 2009
Simple regression

PRODH1311 neg

SPM\{T_{50}\}

Fitted responses effects of interest

Kempf et al.

PLoS Genetics 2008
X-linked variants

- Men are hemizygotes, women can be homozygotes
- Gene by gender interaction must be included in the model
- ANOVA: 5 groups m1, m2, f11, f12, f22
- Can also be done by multiple regression with gender interaction term (see next example)
MAO-A uVNTR:

Caspi et al. Science 2002

Sabol et al. Hum Genetics 1999
ANOVA: Genotype by gender

Published in Meyer-Lindenberg et al. *PNAS* 2006
Genotype x gender interaction (MAO-A)

Published in Meyer-Lindenberg et al. *PNAS* 2006
Can do ANOVAs with as many groups as there are cells: 11-11, 11-12, 11-22, 12-11 etc.

- Gets to be a lot of cells and contrasts to run
- Regression approach is preferred: code both genes as regressors, mean-center (?), and put an interaction regressor for each interaction you want to do together with the main effect regressors
- The procedure is exactly the same for continuous predictors
- To test for interaction, just run +1 and -1 contrast over the interaction regressor column
- Easily generalizes to more than one interaction term: for a three-way interaction, multiply the three main effects together, etc.: can use createcovs script
- Not easy to see what a significant interaction reflects: best to pull out values and plot
Interaktion PRODH and COMT

Human chromosome 22

3-Mb TDR (>85%)
1.5-Mb deletion (~8%)

wt kd
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1449183_at 2.002E-5 COMT catechol-O-methyltransferase
1429906_at 6.228E-4 NRXN3 neurexin III
1454988_x_at 0.011203 TRIM9 tripartite motif protein 9
1444973_at 0.001546 KCNMA1 potassium large conductance calcium-activated channel, subfamily M, a
1452423_at 0.00338 PCLO piccolo (presynaptic cytomatrix protein)
1451850_at 0.003486 SPNB2 spectrin beta 2
1445537_at 0.007765 SRGAP2 SLIT-ROBO Rho GTPase activating protein 2
1432415_at 0.009047 RAB3C RAB3C, member RAS oncogene family
1421136_at 2.211E-4 EDN3 endothelin 3
1433894_at 7.436E-4 SYT1 synaptotagmin 1
1431812_a_at 7.518E-4 SLC6A9 solute carrier family 6 (neurotransmitter transporter, glycine), member 9
1434582_at 0.001122 D14ERD171E DNA segment, Chr 14, ERATO Doi 171, expressed -1.51948043
1455766_at 0.001551 GABRA1 gamma-aminobutyric acid (GABA-A) receptor, subunit alpha 1
1442707_at 0.00155 CAMK2A calcium/calmodulin-dependent protein kinase II alpha
1448907_at 0.002005 HRH3 histamine receptor H3
1417746_at 0.002071 CPLX1 complexin 1
1418496_at 0.004798 STX7 syntaxin 7
1417702_a_at 0.004904 HNMT histamine N-methyltransferase
1415766_at 0.005717 SEC22L1 SEC22 vesicle trafficking protein-like 1 (S. cerevisiae)
1447863_s_at 0.005933 NR4A2 nuclear receptor subfamily 4, group A, member 2
1440843_at 0.006112 SLC5A10 solute carrier family 5 (sodium/glucose cotransporter), member 10
1420418_at 0.006817 SYT2 synaptotagmin 2
1444455_at 0.007049 CAACNA1A calcium channel, voltage-dependent, P/Q type, alpha 1A subunit
1416561_at 0.007419 GAD1 glutamic acid decarboxylase 1
1456406_at 0.007637 NRXN2 neurexin II
1419246_s_at 0.008669 RAB14 RAB14, member RAS oncogene family

Paterlini et al. Nat Neurosci 2005
Gene-gene interaction: multiple regression approach

Kempf et al. under review
So it turns out 5-HTTLPR is actually triallelic …

Serotonin Transporter Promoter Gain-of-Function Genotypes Are Linked to Obsessive-Compulsive Disorder

Xian-Zhang Hu,¹ Robert H. Lipsky,¹ Guanshan Zhu,¹ Longina A. Akhtar,¹ Julie Taubman,¹ Benjamin D. Greenberg²,³ Ke Xu,¹ Paul D. Arnold,⁴ Margaret A. Richter,⁴ James L. Kennedy,⁴ Dennis L. Murphy,⁵ and David Goldman¹

¹Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD; ²Butler Hospital and ³Department of Psychiatry, Brown University School of Medicine, Providence; ⁴Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto; and ⁵Laboratory of Clinical Science, National Institute of Mental Health, Bethesda, MD

A functional serotonin transporter promoter polymorphism, HTTLPR, alters the risk of disease as well as brain morphometry and function. Here, we show that HTTLPR is functionally triallelic. The L_C allele, which is the L allele with a common G substitution, creates a functional AP2 transcription-factor binding site. Expression assays in 62 lymphoblastoid cell lines representing the six genotypes and in transfected raphe-derived cells showed co-dominant allele action and low, nearly equivalent expression for the S and L_C alleles, accounting for more variation in HTT expression than previously recognized. The gain-of-function L_A L_A genotype was approximately twice as common in 169 whites with obsessive-compulsive disorder (OCD) than in 253 ethnically matched controls. We performed a replication study in 175 trios consisting of probands with OCD and their parents. The L_A allele was twofold overtransmitted to the patients with OCD. The HTTLPR L_A L_A genotype exerts a moderate (1.8-fold) effect on risk of OCD, which crystallizes the evidence that the HTT gene has a role in OCD.
Modeling individual alleles /haplotypes

- We could do an anova with all possible combinations 11, 12, 13, 22, 23, 33
- Or a regression where we code these 1-6
- We can save df and increase power if we assume codominance, because then we can model individual alleles
- Set up as multiple regression with one regressor for each the three alleles: LA, LG, and S which contains the number of alleles for that person (0, 1, or 2)
Triallelic system: 5-HTTLPR: assuming codominance

Published in Pezawas*, Meyer-Lindenberg* et al. Mol Psychiatry 2008
Triallelic system: 5-HTTLPR: F test strategy

Published in Pezawas*, Meyer-Lindenberg* et al. *Mol Psychiatry* 2008
Multiallelic variant: RS3 microsatellites in AVPR1A

(GATA)$_{14}$

RS1

(CT)$_4$-TT-(CT)$_8$-(GT)$_{24}$

RS3

Meyer-Lindenberg et al. *Mol Psychiatry* 2009
PR1A expression and social behavior in voles

Hammock and Young, Science 2005
Multiallelic system – AVPR1A

Meyer-Lindenberg et al. Mol Psychiatry 2009
Genetic variation in AVPR1A (RS 3) predicts activation of amygdala

p < 0.001, uncorrected, p = 0.040, corrected in ROI (left)
Meyer-Lindenberg et al. *Mol Psychiatry* 2009
Haplotypes

Ancestral haplotype: ATXGTA

10,000 bp

Contemporary haplotypes:
1. GAATXGTA
2. TAGATXGTA
3. TAGATXGTA
4. CGATXGTA

DNA sequence:

<table>
<thead>
<tr>
<th>Individuals</th>
<th>SNP1</th>
<th>SNP2</th>
<th>Indel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>G</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>T</td>
<td>A</td>
</tr>
</tbody>
</table>
Haplotype estimation problem

- Current genotyping methods do not resolve phase
- The number of haplotypes compatible with a given genotype rises exponentially with the number of SNPs
- Haplotypes can be estimated from pedigrees and population data but are inherently probabilistic
Assessing effects of probabilistic haplotypes in neuroimaging

- Estimation of haplotype (-pairs, diplotypes) and associated probabilities using a Bayesian approach: PHASE 2.1
- Multivariate regression to estimate BOLD response associated with each haplotype
- Inference and multiple comparison correction using Gaussian random fields
Impact of P2 promoter SNP

Chen et al. AJHG 2004
Characterization of a risk haplotype through neuroimaging

Published in Meyer-Lindenberg et al. Mol Psychiatry 2006
CNV imaging project

500 subjects with CNVs, controls structure completed; function starts 3/

Steffansson*, Brammer*, Morgen* et al. in progress, Abbott Nature 2010
CNV imaging project

Gray matter, duplication > controls > deletion

White matter, duplication > controls > deletion

Steffansson*, Brammer*, Morgen* et al. in progress

p<0.05, FWE corrected in mask (GM), whole brain (WM)
Cellular mechanisms of GxE

- Histone methylation (repressive)
- DNA methylation (repressive)
- Histone acetylation (permissive)

Chronic defeat stress

Krishnan and Nestler *Nature* 2008

Altar, *TIPS* 1999
neural glucocorticoid receptor (NR3C1)

McGowan et al., Nat Neurosci 2009

Tyrka et al., PLoS One 2012
Hypermethylation of NR3C1 and cingulate-amygdala connectivity

Tost*, Walter*, Nieratschker* et al., in progress