DFG - Deutsche Forschungsgemeinschaft HI 1928/5-1: Semi-automatic tract dissection for tissue analysis and identification of microstructural white matter biomarkers of therapy outcome in catatonia. 01/2022-12/2024.
Tract-specific analysis of brain tissue properties using longitudinal diffusion-weighted magnetic resonance imaging (dMRI) based tractometry enables noninvasive characterization of pathological changes and facilitates research of the joint development of psychiatric disorders as well as the relation of their clinical manifestations to distinct anatomical structures. Particularly for less prominent fiber bundles, tract-specific analysis involves the manual extraction of the tract of
interest from a huge whole brain tractography result (tractogram), which is a time-consuming and difficult to reproduce task. Therefore, this interdisciplinary project has two main objectives: First, we will facilitate this process by developing and implementing a new method for semi-automatic fiber tract delineation using active learning. By training supportive machine learning algorithms on the fly that are custom tailored to the respective analysis pipeline used to obtain the tractogram
as well as to the tract of interest, we plan to streamline and speed up this tedious and error-prone task while at the same time increasing reproducibility and robustness of the extraction process.
Second, we will apply and validate the developed method in a longitudinal analysis of 100 patients with catatonia according to ICD-11. The clinical goal is to develop robust neuroimaging biomarkers of therapy outcome based on white matter tracts underlying catatonia as well as an in-depth understanding of (patho)physiologically-relevant mechanisms that are essential for advancing precision-medicine–informed treatment options for catatonia.
DFG - Deutsche Forschungsgemeinschaft : Characterizing psychomotor dysfunction and related neural networks in schizophrenia and depression: a transdiagnostic systems neuroscience approach. 04/2022-03/2024.
Schizophrenia (SZ) and major depressive disorder (MDD) are common and severe mental disorders that constitute an extraordinarily high public health burden. To facilitate the development of effective, individualized therapeutic interventions, robust biomarkers are needed that index specific functional deficits relevant for a given patient. Among these, psychomotor abnormalities represent a core clinical feature with transdiagnostic importance in SZ and MDD, but their relevance for individualizing therapeutic options remains unexplored. Psychomotor functioning is defined through the interaction of primary sensorimotor function (e.g., the dopaminergic-based subcortical-cortical motor circuit) and non-motor function, including cognition and emotion, and changes in the underlying neural processes are known to cross diagnostic boundaries of mental illness. This project will provide the basis for characterizing psychomotor mechanisms in SZ and MDD and their downstream translation into clinically useful predictors of therapeutic response. For this, we will integrate a harmonized battery of behavioural assessments targeted at psychomotor functioning with a multimodal neuroimaging approach, in order to provide a detailed characterization of psychomotor alterations in SZ and MDD, and to generate a data backbone tailored towards application of machine learning. Using such multimodal machine learning, we will identify neurobehavioral signatures predictive of treatment response in psychomotor domains 12 weeks after an acute illness episode within and across SZ and MDD. Through such neural and behavioral characterization of psychomotor mechanisms, this study will contribute to the dimensional dissection of severe mental illness and provide preliminary markers for individualization of therapy in the psychomotor domain.
Hirjak D. MWK - Ministerium für Wissenschaft Forschung und Kunst Baden-Württemberg : Forschungslabors für standardisierte Erfassung und Quantifizierung von sensomotorischen Auffälligkeiten bei psychischen Erkrankungen. 10/2021-03/2022.
In den vergangenen drei Jahrzehnten ist das Forschungsinteresse an sensomotorischen Auffälligkeiten bei psychischen Erkrankungen stetig gewachsen. Dieser Trend hat zu einer zunehmenden Anzahl wissenschaftlicher Initiativen geführt, die nicht nur die klinische Notwendigkeit der Früherkennung extrapyramidal-motorischer Symptome, tardiver Dyskinesien und Katatonie hervorgehoben, sondern auch zahlreiche neurobiologische Befunde und klinisch relevante Ergebnisse auf der Grundlage der Pathologie des sensomotorischen Systems bei Patient*innen mit psychischen Erkrankungen geliefert haben. Aktuell kann festgehalten werden, dass bei psychischen Erkrankungen die sensomotorische Verarbeitung mit einer Dysfunktion des zerebello-thalamo-motor-kortikalen Netzwerkes assoziiert ist, die mit (sozial)kognitiven und affektiven Systemen interagiert. Erste longitudinale und interventionelle Studien verweisen zudem auf das translationale Potenzial der sensomotorischen Domäne. Um dem rasanten wissenschaftlichen Fortschritt gerecht zu werden sollte am Zentralinstitute für Seelische Gesundheit in Mannheim (ZI) ein Forschungslabor für standardisierte Erfassung und Quantifizierung von sensomotorischen Auffälligkeiten bei psychischen Erkrankungen aufgebaut werden. Mit dem Aufbau des Forschungslabor für standardisierte Erfassung und Quantifizierung von sensomotorischen Auffälligkeiten (Bewegungsauffälligkeiten) am ZI werden vier wesentliche Ziele verfolgt: (1) Etablierung eines standardisierten Protokolls zur Erforschung sensomotorischer Auffälligkeiten mithilfe von state of the art Kamerasysteme; (2) Das Forschungslabor wird eine mehrdimensionale Erfassung sensomotorischer Dysfunktion mittels untersucherunabhängiger Parameter bei Patient*innen mit psychischen Erkrankungen ermöglichen; (3) Mithilfe des Forschungslabors werden weitere nationale und internationale Forschungskooperationen zur Erforschung der sensomotorischen Domäne bei psychischen Erkrankungen entstehen; und (4) Das Forschungslabor sollten nicht nur Wissenschaftler*Innen zur Verfügung stehen, sondern auch klinisch tätigen Kolleg*innen am Zentralinstitut für Seelische Gesundheit die Möglichkeit bieten, sich auf dem Gebiet der sensomotorischen Neurowissenschaften weiterzubilden, um genuine und pharmakogene sensomotorische Auffälligkeiten im klinischen Alltag frühzeitig erkennen und behandeln zu können.
Hirjak D. DFG - Deutsche Forschungsgemeinschaft HI 1928/2-1: Neurologische Soft Signs als externe Marker neuronaler Dysfunktion bei schizophrenen Psychosen: Untersuchungen mit multimodaler Magnetresonanztomographie. 01/2017-12/2019.
At the beginning of the 20th century, many authors proposed that a considerable number of schizophrenia patients experience genuine motor abnormalities. Recent evidence suggests that the association between psychotic symptoms and motor abnormalities in schizophrenia reflects neuronal dysfunction in the cortico-cerebellar-thalamo-cortical circuit (CCTCC) as conceptualized in the model of “cognitive dysmetria”. If this dysfunction develops earlier than prodromal symptoms of the disorder, it might give rise to subtle motor abnormalities. In this context, subtle motor deficits have been suggested to be an external marker of underlying neuronal dysfunction that is linked with an elevated risk for developing schizophrenia.
Neurological soft signs (NSS) are frequently found in psychiatric disorders of significant neurodevelopmental origin, e.g. in patients with schizophrenia, borderline and autism. Previous neuroimaging studies in patients with schizophrenia have shown that NSS are associated with abnormal cortical and subcortical structure and function. Yet, it still remains unclear whether these findings are associated with neuropathological processes underlying the disease or if they are confounded by antipsychotic treatment. Some of these issues could be addressed in individuals at clinical ultra-high risk (UHR) for developing psychosis or healthy individuals. Given that NSS are present in schizophrenia patients, UHR individuals and healthy individuals, they might suggest a neurodevelopmental signature of CCTCC dysfunction, probably as a continuum between health and disease.
This project will test several important and innovative hypotheses while focusing on three study samples. So far, there has been no previous research combining this diverse set of novel neuroimaging methods with advanced data analysis techniques in the context of NSS. This project will add significantly to the previous evidence in this area by focusing on contributions of structural and functional connectivity (e.g. alterations of white matter tracts and aberrant neural activity in the CCTCC) to NSS expression in three study groups. Furthermore, we seek to combine dMRI and fMRI to examine whether regions with altered patterns of white matter connectivity correspond to areas of aberrant functional connectivity. This approach will provide substantial information on a “motor phenotype” within the schizophrenia spectrum in terms of behaviour, brain structure and brain function. To conclude, following a dimensional and multimodal approach we argue that there are distinct structural and functional correlates of NSS that, if precisely defined in terms of their clinical associations, have potential for use early in the stratification of patients presenting with psychotic disorders. Finally, we expect that the results from this project will provide an important data-based framework for future longitudinal studies on NSS within the schizophrenia spectrum and beyond.