Start Lehre Weitere Fächer

Weitere Fächer

Wissenschaftliche Direktorin: Prof. Dr. Herta Flor
Tel.: 0621 1703-6302, E-Mail

Sekretariat: Angelika Bauder
Tel.: 0621 1703-6302, E-Mail

Institut für Neuropsychologie und Psychologie

Abteilung Klinische Psychologie

Leitung: Prof. Dr. Peter Kirsch
Tel.: 0621 1703-6501, -6511, E-Mail

Sekretariat: Ellen Schmucker
Tel.: 0621 1703-6502, E-Mail

Abteilung Klinische Psychologie

Lehrende / Instructors:

Wissenschaftlicher Direktor: Prof. Dr. Rainer Spanagel
Tel.: 0621 1703-6251, E-Mail

Sekretariat: Christine Roggenkamp
Tel.: 0621 1703-6252, E-Mail

Institut für Psychopharmakologie



Aktuelle Informationen zum Seminar für Psychopharmakologie finden Sie auf der Seite Veranstaltungen. / For up-to-date information about the Psychopharmacology Seminar, please visit the Events page.

Kommissarische Leitung: Prof. Dr. Stefan Wellek
Tel.: 0621 1703-6001, E-Mail

Sekretariat: Mireille Lukas
Tel.: 0621 1703-6002, E-Mail

Abteilung Biostatistik


Leitung: Prof. Dr. Dusan Bartsch
Tel.: 0621 1703-6202, E-Mail

Abteilung Molekularbiologie


Biochemisches Labor

Leitung: apl. Prof. Dr. Patrick Schloss
Tel.: 0621 1703-2901, E-Mail

Biochemisches Labor


Leitung: apl. Prof. Dr. Harald Dreßing
Tel.: 0621 1703-2941, E-Mail

Sekretariat: Martina Herbig
Tel.: 0621 1703-2381, E-Mail

Forensische Psychiatrie


apl. Prof. Dr. Harald Dreßing - LSF / Uni Mannheim

Professor für Theoretische Neurowissenschaften
Abteilungsleiter: Prof. Dr. Daniel Durstewitz
Tel.: 0621 1703-2361, E-Mail

Sekretariat: Christine Roggenkamp, M.A.
Tel.: 0621 1703-6252, E-Mail

Abteilung Theoretische Neurowissenschaften


Veranstaltungen im Sommersemester 2020

Computational Statistics and Data Analysis (MVComp2)

  • Time: Wed 11.00‐13.00 (lecture), Wed 14.00 – 16.00 (exercises)
  • Format: Virtual (Explain-EDU + GoToMeeting/ Zoom + Slack)
  • Lecturers: D. Durstewitz, G. Koppe

This lecture introduces students to basic methods and techniques in computational statistics and data analysis, as widely applicable to empirical problems in the natural sciences. It provides an overview from relevant concepts and theorems in probability theory and mathematical statistics to modern deep learning techniques. The lecture is accompanied by computational exercises in Python or Matlab. It will enable students to analyze small and large data sets and interpret the results from a solid, theoretically grounded statistical perspective, to devise statistical & machine learning models of experimental situations, to infer the parameters of these models from empirical observations, and to test hypotheses about them.

Zentralinstitut für Seelische Gesundheit (ZI) -